学習・教育到達目標に到達するための授業科目の流れ(機械工学科→MSコース R4入学) 機械工学科4年 前期 後期 機械工学科5年 前期 後期 機械工学科3年 □ 数分積分Ⅱ → 数分積分回 □ 応用数字 I A 応用数字 I B 応用数字 I B 応用数字 I B 応用数字 I B 応用解析Ⅰ 応用解析Ⅱ 数学演習Ⅱ テクニカルドローイング 設計製図 I A 設計製図 I B 設計製図 I B 機械設計法 I 医工学 計測概論(B群) 計算機援用工学 → 力学基礎 I 機構学 材料力学 I A 情報リテラシー ▶ システム設計学 力学基礎 I 先端材料工学 材料学I 材料学Ⅱ 加工学Ⅱ → 近代物理学 化学IA 化学IB 化学IIA 化学IIB 卒業研究 流れ学Ⅰ 流れ学Ⅱ 流体工学 流体力学 流体工学特論 情報リテラシー マリンエンジニアリング(C群) 熟力学Ⅰ 熱力学Ⅱ 力学基礎Ⅱ 熟工学 ▼ エネルギー工学 ▼ エネルギー環境学 ▼ プラント工学 材料学Ⅱ 材料学Ⅱ 材料力学ⅡA 材料力学ⅡB 材料力学特論Ⅱ 材料力学特論Ⅱ 加工学Ⅰ 加工学Ⅱ 建投振動学(D群) 計震工学(D群) 知能機械工学 制御工学 I 制御工学 I → 知識情報工学 機構学 ディジタル電子回路(B群) 電気工学Ⅱ 応用物理Ⅰ 応用物理Ⅱ 電気工学 I 電気機器 I (B群) 電磁気計測(C群) 通信工学(A群) 電気機器 I (B群) ▶ 応用測量学 I (C群) 建築論 II (C群) 建築論 I (B群) 創造演習 創造設計製作 システム工学(A群) インターンシップ インターンシップ | 物理IA | 物理IB | 物理IA | 物理IB | 化学IA | 化学IB | 化学IA | 化学IB | 機械工学実験Ⅰ 工作実習 I 按計製図 I A 按計製図 I B 工作実習1 → 機械工学実験 II 卒業研究 入門機械電気電子情報工学 日本文化論 宗教と「こころ」I ③ 宗教と「こころ」I ④ 国際金融論 I ④ | ドイツ文化論 I ⑤ | ドイツ文化論 I ⑥ | 現代社会と宗教 I ⑥ | 現代社会と宗教 I ⑥ | → 科学と社会 技術者倫理 人間論Ⅱ → 人間論Ⅱ 経済学 地理 哲学法学 地域学 I ⑤ 地域学 I ⑥ 現代日本の政治・経済と法 I ⑥ 現代日本の政治・経済と法 I ⑥ | 総合英語 I B | に関する I 総合英語VA総合英語VA → 英語演習 I → 英語演習 I アート&デザイン Ⅰ アート&デザイン Ⅱ 工業英語 ドイツ語 I ③ 中国語 I ③ 日本語C ドイツ語 I ④ 中国語 I ④ 日本語D 韓国語 I ⑤ 日本語E 日本語A 日本語B 保健体育Ⅱ 保健体育皿 保健体育Ⅳ 日本史 世界史Ⅰ 世界史Ⅱ → 科学と社会 技術者倫理 地理 哲学法学 防災リテラシー 創造演習 環境工学 I A(A群) 環境工学 I B(A群) ▼環境工学特論 特別実験 機械工学実験 I ▶ 機械工学実験 Ⅱ 特別研究基礎 → 特別研究 卒業研究 情報処理Ⅰ 情報処理Ⅱ 計算機援用工学 → 入門機械電気電子情報工学 設計製図Ⅲ 画像処理(C群*) 情報学(D群*) 数值計算法(A群) シミュレーション工学(D群) 数值解析 I (B群) 建設振動学(D群) 工学基礎 創造演習 機械工学実験I ◆特別演習 ▶ 機械工学実験 Ⅱ 入門機械実習 工作実習1 工作実習Ⅱ 創造設計製作 物理ⅠⅠ 物理ⅡⅠ 物理ⅡⅠ

学習·教育到達目標

(A) 自然科学と工学の基礎を身につける。 (B) 専門分野の基礎知識を修得し、技術の実践に応用できる。

(C) 修得した知識を統合し、製品やシステムを考案できる。(D) 実験・実習・演習により現象の理解を深め、実践力を身につける。

(E) 技術者に必要な人間性、国際性、協調性及び英語による基礎的なコミュニケーション能力を身につける。

(F) 技術が自然や社会に与える影響を理解し、技術者としての倫理観を身につける。 (d) 護極の投来・報告などを適切にまため、免表できる。 (H) コンピュータを技術の実践に活用できる。 (I) 責任を自覚し、互いに協力し合い、チームの目的達成に貢献できる。

(i)高度な数学の知識と幅広い工学の基礎知識を修得し、専門分野に応用することができ

ii)機械工学分野の深い学識を修得し、専門的な問題を解決するために活用できる。

)機械工学分野の応用的な実験を遂行・分析することができ、実習・演習により修得し 犠技術をエンジニアリングの実務に活用できる。 (w) 修得した人文・社会科学の知識により広い視野と国際感覚を持ち、技術者として倫理的に行動することができる。

v)技術者としての実践力、協働力を身につけ、地域、社会等の課題の発見と解決に対して、修得した知識・技術を融合して創造的に取り組むことができる。また、その成果を発表。